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Combinants, Bell polynomials and applications 

R Vasudevant, P R Vittalf and K V ParthasarathyS 
t MATSCIENCE, The Institute of Mathematical Sciences, Madras-600 113, India 
i Department of Mathematics, Vivekananda College, Madras-600 004, India 

Received 28 June 1983 

Abstract. The concept of combinants introduced in the formulation of the generating 
function for probabilities is analysed, demonstrating the fact that they play the same role 
in computing cumulants as probabilities do in computing moments. The mathematical 
framework of Bell polynomials is used to relate combinants and probabilities. The effective 
use of combinants in branching processes is brought out. Also the coupled differential 
equations governing the combinants yield direct coupled equations for cumulants. The 
concept of mixed combinants is developed. This will be explored in later contributions. 

1. Introduction 

Study of point processes is very important in many areas in physics, engineering, 
biology and a host of other fields of human activity, and the realisations of such a 
point process are point events. 

Such problems are analysed by formulation of certain point functions such as 
cumulant functions (Kendall 1949) and product densities (Ramakrishnan 1950) etc. 
The product densities (§  2) formulated by Ramakrishnan provide a complete characteri- 
sation of the process and also satisfy elegant equations. Kauffman and Gyulassy (1978), 
studying theoretical models for created boson multiplicities, introduced quantities 
called ‘combinants’ which measure the deviation of a given process from those described 
by Poisson probabilities (§  3). The purpose of this paper is to study the relationship 
of combinants with the well known correlation and cluster functions, cumulants etc 
(0 4). Bell polynomials (Riordan 1958) provide the essential mathematical framework 
relating combinants, probabilities etc (§  5 ) .  Applications of this concept to complex 
branching processes, the analysis of emitted photoelectrons and other phenomena are 
dealt with in detail ( §  6) .  

2. Product densities 

The product densities, a powerful tool to deal with stochastic point processes, relate 
to the distribution of a discrete number of entities in a continuous infinity of states 
(Ramakrishnan 1959). The central quantity of interest is dN( t ) ,  the number of entities 
occurring in a continuous interval ( t ,  t+dt ) .  Assuming that the probability that there 
is one entity between t and t + dt is of order d t  and the probability that there is more 
than one is less than dt, we get the mean number in dt  as 

E [dN( t ) l= f i ( t )  dt  (2.1) 

where f l ( t )  is called the product density of first order. 
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Product densities of higher orders express all the correlations of the stochastic 
variable d N ( t )  existing at various t values. A very useful result for the calculation of 
the rth moment of the number of entities in the desired range runs as 

b b 

E [ ( N ( b ) - N ( a ) ) ' ] =  C:  [ dt ,  1 dt , .  . . dr,f,(t,, t 2 , .  . . , t , )  ( 2 . 2 )  
r = l  a 5 lab 

where C: denotes the number of various confluences of the infinitesimal intervals, the 
maximum order of any confluence being ( r  - s). A closed form for C i  is (Kuznetsov 
et a1 1965, Vasudevan 1969) 

The  higher-order product densities f r (  x l ,  x2, . . . , x,) can be expressed in terms of 
cluster functions &(XI, x 2 , .  . . , x,) which are not separable. The g's a re  irreducible 
cluster functions which characterise the internal correlation in the system which a re  
related to connected diagrams in other phraseologies. For a Poisson process all g's 
other than g ,  are zero. 

The moment generating function of a discrete process governed by probabilities 
P i n )  can be related to  the product density generating function as 

P ( n )  e"" = O'], . . . f , (x l ,  x?. , . . , x,) dx, . . . dx, = Q,(w). (2.4) 
n = ( I  \ = ( I  s! H 

Inversely, the probability P H ( n )  of n entities in region R is given by 

The factorial moment generating function Q , ( w ' )  is given by replacing w by 
log( 1 + w ' )  in (2.4). Also, 

(i '[Qmlw']) =(&)=I R . . .  [ f , ( x 1 . x 2 , . .  . , x , ) d x l  . . .  dx,. 
dw" w'=! l  

The cumulant generating function is given by 

where 

and g, are the cluster functions of order s relatiqg to the point process given rise to 
by R n ) .  

The cumulants K ,  of the P( n )  process are obtained from Q,( w )  by 

K ,  = [d'Q,(w)/dw'],=o. ( 2 . 8 )  
Hence we easily see that 

K,= 2 C:rs  (2.9) 
5 = 1  

where C :  are  the same coefficients as in (2.3) (Kuznetsov 1965. Ziff 1977). 
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To obtain the factorial cumulant function we can replace in (2.7) the parameter w 
by log( 1 + U ' ) .  We then see that 7: are the factorial cumulants, similar to the factorial 
moments given by (2.6). What is the signficance of the cumulants and factorial 
cumulants? The moments and the factorial moments are derived from sums over the 
probabilities. If so, what is the analogous situation in the case of cumulants? We  will 
examine these ideas in the context of the entities called the combinants to be described 
in B 3. 

3. Combinants 

The probability generating function for the Poisson distribution with mean f i  is given 
by 

r 

F ( A )  = A"P(n)  =exp[(A - l)fi]. (3.1) 

We  see that log F ( A )  is a first degree polynomial in A. If however, we employ a higher 
degree polynomial, we can write in general 

n =o 

X 

l o g F ( A ) = l o g P ( O ) +  1 c(k)Ak with P ( 0 )  > 0 (3.2) 
k = l  

which means 
x 

F ( A ) = e x p  1 c ( k ) ( A k - l )  ) and e x p - 1  c ( k )  = P ( o ) .  (3.3) 
(k:l I 

The coefficients c ( l ) ,  ~ ( 2 1 , .  . . thus completely characterise the probabilities P ( n )  and 
express the deviations from a simple Poisson process. The c(  k)'s a re  expressible in 
terms of the first k probability ratios P(  l)/P(O), P (2 ) /P (O) ,  . . . , P( k ) / P ( O ) .  It should, 
however, be noted that the condition P(O)>O is necessary for the existence of the 
c( k )  defined as above. 

The expressions for c (k) ' s  in terms of ( P ( k ) / P ( O ) ) ' s  are  given a5 follows. For 
example c(3) is given as 

and the general expression for any k is obtained in B 4 using Bell polynomials. 
Inversely, P ( n ) ' s  are  given in terms of c( k) 's  as 

which is derived by us using the mathematical 
Now, in calculating cumulants, combinants 

P(  n )  d o  in computing moments. We display 

1 l ' c (1)  = K ,  
T 

just as the rth moment 
l = I  

framework of Bell polynomials in § 4. 
play the same role as the probabilities 
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To see this let us start from the moment generating function 

= 5 0" I,.. . 1 f,(xl, x2,.  . . , x,) dxl . . . dx, 
s=o s! R 

33 (e"- l )s  
=exp 7 5  

s = l  s! 

using earlier equations. 
Taking logarithms on both sides in (3.7), we get 

(3.7) 

Differentiating both sides, with respect to w ,  r times and giving the value w = 0, we get 

Thus, we see that the rth cumulants are obtained taking the average (1') over all the 
combinants c(1) and cumulants in turn are related to the cluster integrals rS by Ci  
coefficients in a way analogous to the moment relationships with the integrals over 
the product densities. Taking w = log( 1 + w ' )  and differentiating both sides suitably 
and putting w '  = 0, we get 

(3.10) 

Thus T~ is the rth factorial cumulant with respect to c(1). This is analogous to the 
factorial moments as displayed in ( 2 . 6 . ) .  

It is also easily seen that 

1 cc ( - l )s  
c ( I ) = -  - TS+/. I !  s = 1  s! 

(3.11) 

Thus we have seen that the combinants play very much the same role as the probabilities 
themselves. We compute cumulants and factorial cumulants with respect to c( I )  in 
the same manner as we compute moments and factorial moments with respect to P( n ) .  

4. Bell polynomials and combinants 

Bell polynomials, which play a big role in analysing partition functions in terms of 
cluster integrals (Mayer and Mayer 1977), are introduced here to arrive at the relations 
between combinants and probabilities, detailed in the earlier sections. For composite 
functions of the type F ( t )  = f [ g ( t ) ] ,  assuming f ( 0 )  = g(0) =0 ,  we obtain (Aldrovandi 
and Monte Lima 1980) in general 

.n 
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where 

with f, and g, being the coefficients occurring in the Taylor expansion of f (  t )  and g(  t )  
respectively. B,,(g) are called the Bell polynomials connected with the function g and 
are defined by 

and can be easily expressed in an explicit form using the multinomial theorem 
(Abramowitz and Stegun 1965). 

The terms B,,(g) can be considered as the elements of the left-triangular infinite 
matrix Bn(g) (if n becomes infinite) and the group property of such matrices leads to 
useful relations such as 

Taking g( t )  = e' - 1, we see that 

Bnf[g( t ) ]=BnI( l , l ,  . . . ,  1)=-  -(e'-1) = S ;  
l !  [ dt"  d n  f ] r = o  (4.5) 

and this is exactly the same as the Cy coefficients obtained in (2.3). These are also 
known as the Stirling numbers of the second kind. Stirling numbers of the first kind 
are obtained by the inverse of the matrix Bnf(g). This means we sould take the function 
f as log(1 + U )  and obtain its Bnf(f). They are 

B,,(f) = B"I(O!, -l! ,  2!, -3!, . . . ). (4.6) 

In a similar fashion, we can find the P(n) 's  by the composite function formula, if 
we take 

r ' = [ F ( A ) / P ( O ) -  11 (4.7) 

F(0) = 0, 

so that 

(4.8) 

f (  U )  = e u -  1, f (0) = 0. (4.9) 
Hence, we easily see that 

(4.10) 

Therefore the probability ratios P(n) /P(O)  are given in terms of c ( k ) ' s .  This 
is exactly the formula (3.5), when we recognise that exp-z,, c ( k )  =P(O) and that 
when 1 exceeds n all the BnI quantities are zero. To obtain the combinants c (k)  
themselves, we could use the matricial expression for the composite function f ( A ) ,  
namely 

B[r'.(A)l= B[f(g(t))l= B[g(t)lB[f(u)l. (4.11) 
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Hence 

(4.12) 

The B;' ( f )  elements of the inverse function of f can be obtained as in (4.6) and hence 
we have 

(4.13) 

and B n 1 [ g ( h ) ]  are  given by 

Hence we have the values of the first few c( k )  as 

etc as in (3.4). 

(4.14) 

5. Combinants and branching process 

The basic mechanism of a branching process (Harris 1963) is to start with an initial 
individual of the zeroth generation who is capable of producing progeny with prob- 
abilities P( k ) ,  k = 0, 1,2, . . . etc who constitute the first generation. Each individual 
of this generation produces offspring independent of each other with probabilities 
which are the same for the individuals in each generation. If this probability of 
reproduction remains constant, the generating function for the population of the N t h  
generation is 

For details, see Bailey (1964). Here we employ the concept of combinants t o  get the 
results for cumulants etc for the N t h  generation. 

The  moment generating function "Q,, of the N t h  generation is 
I) 

N 

where " c ( k )  are the combinants corresponding to the N t h  generation. From ( S . l ) ,  
we can see that 

where 
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and IC( k )  are the combinants of the first generation. Hence, let us take the cumulant 
generating function of the N t h  generation as ..Q,=zl ~ ( k ) [ e x p ( k ~ - ~ Q , ) - l ] .  ( 5 . 5 )  

k = l  

We see that the recursion for the cumulant generating function NQc in terms of N - ' Q c  

etc can be written for  all N = 1 , 2 , 3 , .  . . . We thus obtain 

(5.6) 

We easily see that '"O,(O) = 0 for all N and thus for these composite functions, the 
techniques of the Bell polynomials can be effectively used to obtain the recursion 
relations for Nkr.  the rth cumulant of the N t h  generation. The Bell polynomial matrix 
corresponding to the sth generation is given by the elements "'Bnr by using (4.3) 

w 1 = Qc[ N- Q,( w 11 = a,{ U,{"-' Q,( w )I}. 

Here (N'B,, ="'Kr, the rth cumulant of the N t h  generation. Equation (5.6) can be 
easily generalised as 

"Qc=ll'O,("'Q,('"Q,.. . )). (5.8) 

Therefore the ("'Bnr polynomial matrix is nothing but the ("B,, matrix multiplied by 
itself N times. That is 

Th rth cumulant for the first generation. It is easy to  check the 
usual recursion formula for the N t h  and (N- 1)th generations (Bailey 1964). 

Since Bnf is a lower diagonal matrix the [BnllN matrix will have its diagonal elements 
. Hence if ")ICl, which is the mean of the first gener- 

ation, is less than unity, the diagonal elements will tend to zero as N tends to  oc which 
signifies extinction. 

(1)KN ! I ) K 2 N  ! l i ~ 3 N  (l'KN2 
1 3  , , . . . , 

If all the branching processes are of the same Poisson type with mean m 

Q,( o) = m(e" - 1) (5.10) 

then the B,,/ matrix corresponding to this function is 

(5.11) 

The matrix of (N)B,I coefficients corresponding to the N t h  generation is given by the 
N t h  power of this matrix. We obtain the first column of the second generation matrix 
as 

2 B n 1 = [ m 2 , m ( m + m 2 ) ,  m(m+S:m2+S:m3) , .  . . ]  for n = 1 , 2 , .  . . . (5.12) 
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From the cumulant generating function of the second generation, we have the com- 
binants of the second generation as 

c(r)  = m(e-"'/r!) 'dr = 1 , 2 , .  . . . (5.13) 2 

Hence by equating cumulants of the second generation, we obtain the identity 
n 

= m+S;m2+. . , + s ; m n  = m'S;. 
I =  1 

2 rne-"r 
, = I  r! 

(5.14) 

This should be true for all values of m. This identity can also be arrived at by other 
methods. We can also express the combinants of the rth generation in terms of the 
combinants of the ( r -  1)th generation. We obtain 

(5.15) 

It is also easy to see that the probability of zero population at the rth generation is 
given by the formula 

(5.16) 

where ' p ( 0 )  is the probability of zero population of the rth generation and r-lQc is 
the cumulant generating function of the ( r -  1)th generation. The above equation can 
also be written as 

(5.17) 

Even if the production probabilities are not Poisson the above equation is true. Hence, 
if log p (  i) = Bo for any generation, eo = Q,( Bo) is the fixed point equation that has to 
be solved for computing the extinction probability for any population (see Bailey 1964). 

To calculate the second cumulant of the Nth  generation, it is enough if we 
concentrate on the 2 X 2 BnI matrix of the form 

log $(O) = '-'Q,(log p ( 0 ) )  

log ' ~ ( 0 )  = Qc(logr-' ~ ( 0 ) ) .  

(5.18) 

We should raise this 2 x 2  matrix to the power N. It is important to note that the 
lower diagonal matrix M raised to the power N a 2 will vanish. Hence if we write 
the Bnf matrix as a sum of the diagonal and lower diagonal matrix as in (5.18), when 
we compute ( D + I W ) ~ ,  the only non-vanishing terms will be of the type 

Hence, the second cumulant of the Nth generation is given by 
N-1 

N K  - K ~ I K ~ K N - I - I  
2 -  1 

1=0 
(5.20) 

Since we know that K2 = U' and K 1  = m for the production probabilities, the K2 of 
the Nth  generation is 

u2[(1 -")/(I - m)]mN- ' .  (5.21) 

To compute the third cumulant of the Nth generation, it is enough if we take the 
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3 X 3 B,! matrix given by 

= D +  Mi + M2. (5.22) 

After raising the above matrix to the power N, we are only concerned with the NB3,th 
term of the Nth generation matrix. To this end it is enough if we compute the sum 
of the following type of products of the matrices: 

N-r N-1 C C D I M ~ D ~ M ~ D N - I - ~ - ~  + Nfl D I M ~ D N - I - I .  

r=O 1=0 /=0 
(5.23) 

The term corresponding to the third cumulant of the Nth generation is obtained by 
considering the Nth  power of the 3 X 3 Bn1 matrix. This can be obtained from (5.23) 
as 

(5.24) 

We can easily check this out for the basic Poisson production process, whose cumulants 
are all m. Calculations in the Poisson case become simpler if we take note of the fact 
that 

DM1 = mM1 D and DM2 = mM2D. 

6. Combinants and other applications 

6.1. Birth, death and immigration process 

In treating a linear birth and death process with individual probabilities being time 
independent or otherwise, using the concept of combinants, we can directly write down 
the equations for the cumulants in a compact form, without solving for the generating 
function. As usual, we have the inflow-outflow equations for P( n, t ) ,  the probability 
for having n units in time t as 

dP(  n, t) /dt  = - ( A  + p ) n P (  n, t )  + p (  n + 1)P( n + 1, t )  + A ( n  - l ) P ( n  - 1, t )  (6.1) 
with P( n, 0) = 

with parameter U ,  is 
The partial differential equation for G (  U ,  t ) ,  the probability generating function 

(6.2) 
Taking the expression G (  U ,  t )  = exp[Xp='=, c(  k ,  t ) (  u k  - l)], we obtain the equation satis- 
fied by combinants c(  k ,  t )  as 

dG( U ,  t ) / d t  = (1 - u ) ( p  - A u ) d G / a u .  

dc(k, t ) / d t = A [ ( k - l ) c ( k - l ,  t ) - k c ( k ,  t ) ]  

-pcL[kc(k, t ) - ( k + l ) c ( k + l ) ,  ?)I, k = 1 , 2 , .  . . , (6.3) 
Multiplying both sides by k' and summing, we obtain the equation for the rth cumulant 
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K ,  as 

Hence for the first moment K ,  = m we have 

d m ( t ) / d t = ( A  - p ) m  with m(0)  = 1 (6.5) 

and 

d a 2 ( t ) / d t =  ( A  + p ) m (  t )  + 2(A - p)a2,  with a(0)  = 0 (6.7) 

with the solution 

a ( t )  = [ ( A  + p ) / ( A  -p)](e3'A-'''r- e 2 ( A - p ) f  1. 
The actual solution obtained for G( U ,  t )  from (6.2) 

The solution of (6.3), for the combinants c( k, t ) ,  can be found as c (  k ,  t )  = ( LY - p '))/ k, 
with 

(6.10) 

If besides the linear birth and death process, we have addition of a unit to the 
population with probability U dt  between time t and t + d t  due to immigration, (6.1) 
will be modified as 

dP(  n, t) /dt  = - ( A  + p ) n P (  n, t )  + p (  n + 1 ) P ( n  + 1, t )  

+ A ( n  - 1 ) P ( n  - 1, t )  + vP(n - 1, t )  - vP(n,  t ) .  (6.11) 

This leads to a system of coupled equations for the cI( k ,  t )  combinants for the process 
with immigration as 

-p[kcl(k, t ) - ( k + l ) c i ( k + l ,  t ) I + v c i ( k  t ) a k . l *  (6.12) 

In the limit t tending to CU, we can arrive at the stationary state cI( k) obtained by 
summing the coupled set (6.12) as 

(6.13) cI( k )  = ( U /  p ) (  A / p )  k - l k - l .  

In the case Alp  < 1, the cumulants are given by 

(6.14) 

Let us now find the solution for cl(k, t )  at any time t. The immigration of a person 
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at a given time t is independent of the process started by the individual at time t = 0. 
Hence, the full generating function for the process is given by 

G , ( u , t ) = G ( u ,  t )exp  Y [ G ( u , t - ~ ) - l ] d ~ .  b: (6.15) 

Hence in the differential equation for Gl(u, t ) ,  we have an additional term (U - l )G1 
which again gives the extra term vc , (k ,  f)cSk,l in the differential equation for the 
combinant c I ( k ,  t ) .  We can easily obtain the solution of (6.12) for finite time as 

rr 1 

Cl( k ,  t )  = C (  k ,  t )  + v J 2 Bkl( 1 ! C( I ) ,  2! c( 2), . . , ( k - 1 + 1) ! C( k - 1 + 1)) ( t  - 7)  d7 
I) l = 1  

(6.16) 

6.2. Compound or filtered Poisson process 

The occurrence of point events may be Poisson with intensity v and, associated with 
each event, we can have a random variable whose statistical features have to be studied 
from the moments of the compound process Y ( t )  given by 

(6.17) 

where N ( t )  is a Poisson process. The generating function of Y ( t )  is given by (Snyder 
1975) 

(6.18) G y ( r ) ( ~ )  = E[eUY(r) ]  = exp{ v t [&(u)  - l]} 

where 4 5 ( u )  is the generating function of the 5 process. 
We now observe from the composite function 

where 

(6.19) 

that 

E (  Y " )  = Bn1[&4I 

and 

E ( ( " )  = BrI,[g(u)l. (6.20) 

As in (4.4), the B,/ matrix of the composite function f[g(u)] is the product of the 
Bnl matrices corresponding to g and f. To obtain the B,,(g) corresponding to the 6 
process, we can find the inverse Bell polynomial matrix B - ' ( f ( u ) ) ,  and use that to 
find the moments of 5. Since [ l o g ( l + u ) ] / v t  is the inverse of e""- 1, we get after 
computation, using (4.12), 

1 "  
vt &1[g(u)]=- B"/[F(u)](-l) i- l( l-  l)!. (6.21) 

Bnl[T(u)] can be easily expressed in terms of the moments of the observed final 
process. Hence, the statistics of the 6 process can be computed easily. 
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6.3. Doubly stochastic processes 

If we are interested in a simple Poisson process whose Poisson parameter is again a 
random variable, the generating function for the final process is given by 

a?"' =(exp[w(e'-- I ) ] ) ~  (6.22) 

where W is the Poisson random process. Hence the final Q, should be averaged over 
this process. Since all the cumulants of the discrete Poisson process are equal to the 
average W, we have by Kubo's theorem (Kubo 1962), 

W(eW-1)"  
Q?' = exp C = exp W[exp(e" - 1) - I]. 

,,=I n! 
(6.23) 

This means that the c ( k ) ' s  of the final process are 

c(k)fi"a'= We- ' /k! .  (6.24) 

Since all the c( k) ' s  exist the final process is not Poisson but a correlated process. If 
however, W is not a discrete process, but a continuous stochastic variable, such as the 
intensity of the gaussian light falling as a sensitive solid, and if we are interested in 
the stochastic features of the emitted electrons, we compute the average (Vasudevan 
1969) 

(exp( Aa loT l i t ' )  dt')) I 

= e x p , ~ l o r S d . J b ' g . ( i l ; r ,  n. , . . .  t,)dt , . . .  dt,=L(A) (6.25) 

where g, are the nth cluster functions and in the case of gaussian light they are the 
coherence functions. If it is assumed as in Saleh (1978) that the nth-order coherence 
functions are constant, ( n -  l ) ! fn ,  then (6.25) reduces to exp[-log(1- aTTA)], which 
is the factorial moment generating function. Replacing A by A - 1, we get the probability 
generating function as 

(6.26) 

Hence the combinants c (k)  of this process relating to the emission of the electrons 
are given by 

l (  a f T  )'=A( A ) k  

k 1 + d T  k l + A  
c ( k ) = -  ~ 

- (6.27) 

where A is the average number of the emitted electrons for the gaussian light. Other 
types of mixing of gaussian light with signals of laser light can be easily obtained and 
the bunching phenomena can also be studied. 

The product density generating function and the probability generating function 
are related in a simple fashion 

L(A) = F ( A  + 1) 

= f . . . f S ( x l . .  . x,) dx, . . . dx, 
s=o s.  

= e x p x  c ( k ,  t ) [ (A+l)k- l ] .  (6.28) 
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Using the Bell polynomial method, we can express (6.25) as 
00 

L(A)=exp E ( k , t ) { h k - l } .  
k = l  

Here 

E(1, t)={Kf}/l! 

(6.29) 

(6.30) 

where {K,}  is the Ith factorial cumulant q of (2.7). It is well known that equation 
(6.28) can be expressed as exponential sums of q's with proper coefficients. If the 
final process represented by p(  n, t )  is the resultant of different causative phenomena, 
such as due to mixing of different beams, we know that the sums of cluster integrals 
of different types should occur in the exponential. Also a cluster function of mixed 
type will appear in the exponential sum. Hence, if chaotic light is mixed with a laser 
signal the photoelectron emission can be described by the product density generating 
function as 

(6.31) 

where 7: represent the cluster integrals due to gaussian light, 1, the only possible 
cluster integral of the Poisson signal and Isf: are the ( n  + 1)th cluster integrals due 
to mixing of the two beams. Hence by putting A = A ' -  1 we can obtain the P ( n ,  t )  
generating function in terms of combinants as 

L(A'-  1) = F ( A ' ) .  

= e x p ~ c ' ( k , f ) ( A " - l ) + ~ ~ ' ' ( k , t ) ( A ' ~ - l ) + ~ c ' ~ ' ' ( k ,  t ) ( A f k - l )  
(6.32) 

where c'( k, t )  are the combinants due to gaussian light which can be computed from 
equation (6.32) as 

c'( k, t )  = k - l [ I c / (  1 + T J k ,  

(since this is only a Poisson process) and 

c""( k, t )  = Ts[Tc/( 1 + TC)lkk-'  

(6.33) 

(6.34) 

(6.35) 

due to the mixing part of the beam. Thus we have extended the concept of combinants 
to entities called mixed combinants. Mixed product densities are common features in 
dealing with the cascade shower problems as in Ramakrishnan et a1 (1965). 

In conclusion we want to point out that the main results of the paper hinge on the 
fact that combinants play the same role in computing cumulants as probabilities for 
finding the moments. Also the connection between the integrals of cluster functions 
and combinants has been brought out. The Bell polynomial analysis of composite 
functions is utilised to obtain several relationships between combinants and prob- 
abilities. Recursion and other types of formulae for cumulants governing branching 
processes and inverse determination of the statistics of the jumps in a compound 
Poisson process from the observed final features are also facilitated by the use of Bell 
polynomial matrices. It is demonstrated that inflow-outflow equations for combinants 
in the context of birth, death and immigration processes lead directly to the evaluation 
of cumulants. Finally, the concept of mixed combinants has been introduced and will 
be exploited in further contributions. 



1002 R VasudeGan, P R Vitta1 and K V Parthasarathy 

References 

Abramowitz M and Stegun A S 1965 Handbook of Mathemarical Funcrions (New York: Dover) 
Aldrovandi R and Monte Lima I 1980 J .  Phys. A :  Math, Gen. 13 3685 
Bailey N T J 1964 7'he Elements of Stochasric Processes (New York: Wiley) 
Harris T E 1963 The Theory of Branching Processes (Berlin: Springer) 
Kauffmann S K and Gyulassy M 1978 J.  Phys. A. Math. Gen. 11 1715 
Kendall D G 1949 J.R. Smrisr. Soc. B 11 230 
Kubo R 1962 J.  Phys. Soc., Japan 17 1100 
Kuznetsov P I, Stratonovich R L and Tikhonov V I 1965 Nonlinear transformations of Stochastic Processes 

Mayer J E and .Mayer J E 1977 Sratisrical .Mechanics 2nd edn (New York: Wiley) 
Ramakrishnan A 1950 Proc. Camb. Phil. Soc. 46 595 
- 1959 Probabiliry and Stochasric Processes. Handbuch der Physik, vol 111 (Berlin: Springer) p 524 
Ramakrishnan A, Vasudevan R and Srinivasan S K 1965 J. Math. Anal. Applic. 11 278 
Riordan J 1958 A n  Introduction to Combinatorial Analysis (New York: Wiley) 
Saleh B 1978 Photo-electron Statistics (Berlin: Springer) 
Snyder D L 1975 Random Point Process (New York: Wiley) 
Vasudevan R 1969 Photon Staristics and Coherence in lighr beams, Symp. Theor. Phys. and Math. vol 9 

Ziff R M 1977 J.  Math. Phys. 18 1825 

(Oxford: Pergamon) 

(Ne& York: Plenum) p 89 


